dydx=6x−2y−72x+3y−6⟶(1)
To solve this differential equation, we need to change the variables as x=x+h and y=y+k such that 6h−2k−7=0 & 2h+3k−6=0
Solving the two equations simultaneously we find the value of (h,k) to be (9/14,−11/7)
∴ Substitute, x=X+9/14 and y=Y−11/7 and also dy=dY and dx=dX
Equation (1) transforms into
dydx=6(x+9/14)−2(y−11/7)−72(x+9/14)+3(y−11/7)−6=6x−2y2x+3y⟶(2)
Now Substitute, y=vx⇒dydx=v+xdvdx⟶(3)
Putting (3) in (2) we get
v+xdvdx=6−2v2+3v
⇒xdvdx=6−2v−2v−3v22+3v
⇒(2+3v)dv6−4v−3v2=dxx
⇒−(2+3v)dv−6+4v+3v2=dxx
integrating both sides
⇒−12∫(6v+4)dv3v2+4v−6dv=∫dxx
⇒−12∫d(3v2+4v−6)3v2+4v−6dv=∫dxx
⇒−12ln(3v2+4v−6)=lnx+lnc
⇒ln(3y2x2+4yx−6x)=−2ln×c
⇒ln(3y2+4yx−6x2)−lnx2=−lnx2−lnc2
⇒3y2+4yx−6x2=A ; A=c−2
⇒3(y+11/7)2+4(x−9/14)(y+11/7)−6(x−9/14)=A