We have,
dydx=x2(x−2)
dy=x2(x−2)dx ……. (1)
On integrating both sides, we get
∫dy=∫x2(x−2)dx
∫dy=∫(x3−2x2)dx
y=x44−2x33+C
Since, y=2,x=0
Therefore,
2=0−0+C
C=2
Thus,
y=x44−2x33+2
Hence, this is the answer.