wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve ln(secx+tanx)cosxdx=ln(secy+tany)cosydy

Open in App
Solution

Given differential equation is

ln(secx+tanx)cosxdx=ln(secy+tany)cosydy

Integrating we get,

ln(secx+tanx)cosxdx=ln(secy+tany)cosydy

Put z=ln(secx+tanx) in LHS

dzdx=secx.tanx+sec2xsecx+tanx

dzdx=secx(tanx+secx)secx+tanx

dz=dxcosx

Put t=ln(secy+tany) in RHS

dtdx=secy.tany+sec2ysecx+tanx

dtdy=secy(tany+secy)secy+tany

dt=dycosy

So, the differential equation becomes

zdz=tdt

z22=t22+C

z2=t2+c

ln2(secx+tanx)=ln2(secy+tany)+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon