wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
sin(660o).tan(1050o).sec(420o)cos(225o).csc(315o.cos(510o))

Open in App
Solution

We have,
sin(660o).tan(1050o).sec(420o)cos(225o).csc(315o.cos(510o))

We know that
sin(θ)=sinθ
sec(θ)=secθ

Therefore,
sin(660o).tan(1050o).sec(420o)cos(225o).csc(315o).cos(510o)

Since,
sinθ=1cscθ
cosθ=1secθ
tanθ=sinθcosθ

So,
sin(660o).sin(1050o).sin(315o)cos(225o).cos(10500)cos(420o).cos(510o)

sin(3600+300o).sin(720o+3300).sin(360045o)cos(1800+45o).cos(7200+3300)cos(360+60o).cos(3600+150o)

sin(300o).sin(3300).(sin(45o))(cos(45o)).cos(3300)cos(60o).cos(150o)

sin(360060o).sin(360300).(sin(45o))(cos(45o)).cos(3600300)cos(60o).cos(90+60o)

(sin(60o)).(sin(300)).(sin(45o))(cos(45o)).cos(300)cos(60o).(cos(60o))

(sin(60o)).(sin(300)).(sin(45o))(cos(45o)).cos(300)cos(60o).(cos(60o))

32×12×1212×32×12×12

2

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon