wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
sin8xcosxsin6xcos3xcos2xcosxsin3xsin4x=tan2x

Open in App
Solution

LHS=sin8xcosxsin6xcos3xcos2xcosxsin3xsin4x=12(2sin8xcosx)12(2sin6xcos3x)12(2cos2xcosx)12(2sin4xsin3x)=12{sin(8x+x)+sin(8xx)}12{sin(6x+3x)+sin(6x3x)}12{cos(2x+x)+cos(2xx)}12{cos(4x+3x)+cos(4x3x)}=(sin9x+sin7x)(sin9x+sin3x)(cos3x+cosx)(cosxcos7x)=sin9x+sin7xsin9xsin3xcos3x+cosxcosx+cos7x=sin7xsin3xcos7x+cos3x=2cos(7x+3x2)sin(7x3x2)2cos(7x3x2)cos(7x3x2)=2cos5xsin2x2cos5xcos2x=sin2xcos2x=tan2x=RHS

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon