LHS=sin8xcosx−sin6xcos3xcos2xcosx−sin3xsin4x=12(2sin8xcosx)−12(2sin6xcos3x)12(2cos2xcosx)−12(2sin4xsin3x)=12{sin(8x+x)+sin(8x−x)}−12{sin(6x+3x)+sin(6x−3x)}12{cos(2x+x)+cos(2x−x)}−12{cos(4x+3x)+cos(4x−3x)}=(sin9x+sin7x)−(sin9x+sin3x)(cos3x+cosx)−(cosx−cos7x)=sin9x+sin7x−sin9x−sin3xcos3x+cosx−cosx+cos7x=sin7x−sin3xcos7x+cos3x=2cos(7x+3x2)sin(7x−3x2)2cos(7x−3x2)cos(7x−3x2)=2cos5xsin2x2cos5xcos2x=sin2xcos2x=tan2x=RHS