wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
sinAsin5A+sin9Asin13AcosAcos5Acos9A+cos13A=cot4A

Open in App
Solution

LHS = sinAsin5A+sinAsin13AcosAcos5Acos9A+cos13A

=(sinAsin13A)(sin5Asin9A)(cosA+cos13A)(cos5A+cos9A)

we know,
sinAsinB=2cos(A+B2)sin(AB2)

cosA+cosB=2cos(A+B2)cos(AB2)

LHS=2cos(13A+A2)sin(A13A2)2cos(9A+5A2)sin(5A9A2)2cos(A+13A2)cos(A13A2)2cos(5A+9A2)cos(5A9A2)

=2cos7Asin(6A)2cos7Asin(2A)2cos7Acos(6A)2cos7Acos(2A)

=2cos7A(sin2Asin6A)2cos7A(cos6Acos2A)

=2cos(6A+2A2)sin(2A+6A2)2sin(6A+2A2)sin(6A2A2)

=cos4Asin2Asin4A
=cot4A

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon