12√3sinx=cosx+cos2x. Square
3(1−cos2x)=4(cos2x+2cos3x+cos4x)
or 4cos4x+8cos3+7cos2x−3=0
Clearly cosx=−1 satisfies above, hence it can be written as
(cosx+1)(4cos3x+4cos2x+3cosx−3)=0
Again cosx=12 satisfies the 2nd factor
(cosx+1)(2cosx−1)(2cos2x+3cosx+3)=0
∴cosx=−1=cosπ
∴x=2nπ+π=(2n+1)π
cosx=1/2=cos(π/3)
∴x=2nπ±π/3
2cos2x+3cosx+3=0,
B2−4AC=9−4.2.3=−ive.
Hence this factor does not give any real values of cosx.