The correct option is
A t=12Given, t+23+1t+1=t+32−t−16.
Transposing 1t+1 to the RHS, we get,
⇒1t+1=t+32−t−16−t+23
⇒1t+1=3(t+3)−(t−1)−2(t+3)6...[Taking LCM of the denominators on the RHS]
⇒1t+1=3t+9−t+1−2t−66 ...[By Distribution Law]
⇒1t+1=3t−3t+10−66
⇒1t+1=46
⇒1t+1=23 ...[Cross-multiplying the denominators]
⇒3=2(t+1)
⇒3=2t+2...[By Distribution Law].
Transposing x terms to one side, we get,
⇒2t=3−2=1
∴t=12.
Hence, option A is correct.