wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: tanθ1cotθ+cotθ1tanθ=1+secθ cosecθ

Open in App
Solution

tanθ1cotθ+cotθ1tanθ
=sinθ/cosθ1cosθ/sinθ+cosθ/sinθ1sinθ/cosθ
=sin2θcosθ(sinθcosθ)+cos2θsinθ(cosθsinθ)
=sin2θcosθ(sinθcosθ)cos2θsinθ(cosθsinθ)
=sin3θcos3θcosθsinθ(sinθcosθ) Using a3b3(ab)(a2+ab+b2)
=(sinθcosθ)(sin2θ+cos2θ+sinθcosθ)sinθcosθ(sinθcosθ)
=1+sinθcosθsinθcosθ
=cscθsecθ+1
$$=1+\sec\theta\csc\theta$
Hence proved











flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon