xdydx−y+xsin(yx)=0
Divide each term by x
∴dydx−yx+sin(yx)=0
Now put yx=v
∴y=x⋅v
∴dydx=xdvdx+v
∴ Given homogeneous equation reduces as follows.
∴xdvdx+v−v+sinv=0
∴x=dvdx−sinv
∴dvsinv=−dxx
∴∫cosecvdv=∫1xdx
∴log∣∣∣tan(v2)∣∣∣+logx=logc
∴log∣∣∣tan(v2)∣∣∣⋅=logc
∴tan(v2)⋅x=c
∴tan(y2x)⋅x=c
Which is necessary solution of given differential equation.