Given,
⇒27(x−2)+31(y+3)=85; 31(x−2)+27(y+3)=89
Let 1x−2=a and 1y+3=b
⇒27a+31b=85 …….(1);
31a+27b=89 ……….(2)
⇒ Adding (1) and (2)
27a+31b+31a+27b=89+85
⇒58a+58b=174
⇒a+b=17458=3 ……….(3)
⇒ Subtracting (1) and (2)
27a+31b−31a−27b=85−89
⇒−4(a−b)=−4
⇒a−b=1 …………(4)
Solving (3) and (4)
⇒a+b=3
a−b=1
______________
2a=4
______________
a=2,
b=3−a=3−2=1
Now,
1x−2=a 1y+3=b
⇒1x−2=2 ⇒1y+3=1
⇒1=2x−4 ⇒1=y+3
⇒x=52 ⇒y=−2.