The correct options are
B x=nπ+π6,,
n∈Z D x=nπ2−π12 ,
n∈Z8sinx=√3cosx+1sinx8sin2xcosx=√3sinx+cosx
4(2sinxcosx)sinx=√3sinx+cosx
2(2sin2xsinx)=√3sinx+cosx
2cosx−2cos3x=√3sinx+cosx
cosx−√3sinx=3cos3x
cos3x=cos(x+π3)
⇒ 3x=2nπ±(x+π3), n∈Z
By taking positive sign, x=nπ+π6, n∈Z
By taking negative sign, x=nπ2−π12, n∈Z