wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve cos3x+sin2xsin4x=0, then x=(2n+1)πm,nI or nπ+(1)nπm,nI. Find the value of m.

Open in App
Solution

cos3x+sin2xsin4x=0
cos3x+2cos3x.sin(x)=0 (sinCsinD=2cos(C+D2)sin(CD2))
cos3x2cos3x.sinx=0
cos3x(12sinx)=0
cos3x=0 or 12sin=0
3x=(2n+1)π2,nI or sinx=12
x=(2n+1)π6,nI or x=nπ+(1)nπ6,nI.
Solution of given equation is
x=(2n+1)π6,nI or nπ+(1)nπ6,nI

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon