cos3x+sin2x−sin4x=0
⇒cos3x+2cos3x.sin(−x)=0 (sinC−sinD=2cos(C+D2)sin(C−D2))
⇒cos3x−2cos3x.sinx=0
⇒cos3x(1−2sinx)=0
⇒cos3x=0 or 1−2sin=0
⇒3x=(2n+1)π2,n∈I or sinx=12
⇒x=(2n+1)π6,n∈I or x=nπ+(−1)nπ6,n∈I.
∴ Solution of given equation is
x=(2n+1)π6,n∈I or nπ+(−1)nπ6,n∈I