Given differential eqn is:-
dydx+2y=xe4x
Clearly, It is as linear differential eqn of the form dydx+Py=Q where P=2,Q=xe4x
Integrating factor I.E. is given by
I.E.=e∫Pdx=e∫2dx=e2x
we know solutions of linear differential eqn is given by
y×I.F.=∫(I.F×Q)dx+C
⇒y×e2x=∫xe4x.e2xdx+c
⇒y×e2x=∫xe6xdx+c(∵ax.ay=ax+y)
⇒y×e2x=x.∫e6xdx−∫(dxdx.∫e6xdx)dx+c ( Using ILATE rule)
⇒y×e2x=xe6x6−∫1.e6x6dx+c (∫u.vdx=u.∫vdx−∫(dvdx.∫vdv)dx)
⇒y×e2x=xe6x6−e6x36+c
∴y=xe4x6−e4x4+ce−2x
final Ans: →y=e4x(x6−14+ce−6x)