The correct option is B √x2−1−sec−1x+√y2−1=c
Given differential eqn can be written as
dydx=−√(x2−1)(y2−1)xy
⇒y√y2−1dy=−√x2−1xdx
Integrating both sides
∫y√y2−1dy=−∫√x2−1xdx
Put y2−1=t
⇒2ydy=dt
Also, put √x2−1=u
⇒x2−1=u2
⇒xdx=udu
∫12√tdt=−∫u1+u2udu
⇒∫12√tdt=−∫u21+u2du
⇒√t=−∫(1−11+u2)du
⇒√y2−1=−u+tan−1u+C
⇒√y2−1=−√x2−1+tan−1√x2−1+C
⇒√y2−1=−√x2−1+sec−1x+C (tan−1√x2−1=z⇒√x2−1=tanz⇒secz=x )