wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: dydx=x2+xyx2+y2

A
c(xy)2/3(x2+xy+y2)1/6=exp[13tan1x+2yx3] where exp x=ex
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
c(xy)4/3(x2+xy+y2)1/4=exp[13sec1x2yx3] where exp x=ex
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
c(xy)2/3(x2+xy+y2)1/6=exp[13sec1x2yx5] where exp x=ex
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B c(xy)2/3(x2+xy+y2)1/6=exp[13tan1x+2yx3] where exp x=ex
Given, dydx=x2+xyx2+y2
which is homogeneous differential eqn.
Put y=vx
dydx=v+xdvdx
So, the given eqn becomes
v+xdvdx=1+v1+v2
xdvdx=1v31+v2
1+v21v3dv=dxx
Integrating both sides,
1+v2(1v)(1+v2+v)dv=dxx .....(1)
Now, we will resolve 1+v2(1v)(1+v2+v) into partial fractions
1+v2(1v)(1+v2+v)=A(1v)+Bv+C(1+v2+v) ....(2)
1+v2=A(1+v2+v)+(Bv+C)(1v)
On comparing ,we get
AB=1;A+C=1;A+BC=0
Solving these eqns , we get
A=23,B=13,C=13
Substituting these values in (2), we get
1+v2(1v)(1+v2+v)=23(1v)13(v1)(1+v2+v)
So, eqn (1) becomes
23(1v)dv13(v1)(1+v2+v)dv=dxx
23log|1v|16(2v+13)(1+v2+v)dv=logx+logC
23log|1v|162v+1(1+v2+v)dv+121(v+12)2+(32)2dv=logx+logC
23log|1yx|16log|v2+v+1|+13tan1(2v+13)=logx+logC
23log|xy|16log|y2+xy+x2|+23logx+13tan1(2y+xx3)=53logx+logC
logc(xy)2/3x(y2+xy+x2)1/6=13tan1(2y+xx3)
c(xy)2/3x(y2+xy+x2)1/6=exp[13tan1(2y+xx3)]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Irrational Algebraic Fractions - 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon