The correct option is B c(x−y)2/3(x2+xy+y2)1/6=exp[−1√3tan−1x+2yx√3] where exp x=ex
Given, dydx=x2+xyx2+y2
which is homogeneous differential eqn.
Put y=vx
dydx=v+xdvdx
So, the given eqn becomes
v+xdvdx=1+v1+v2
⇒xdvdx=1−v31+v2
⇒1+v21−v3dv=dxx
Integrating both sides,
∫1+v2(1−v)(1+v2+v)dv=∫dxx .....(1)
Now, we will resolve 1+v2(1−v)(1+v2+v) into partial fractions
1+v2(1−v)(1+v2+v)=A(1−v)+Bv+C(1+v2+v) ....(2)
⇒1+v2=A(1+v2+v)+(Bv+C)(1−v)
On comparing ,we get
A−B=1;A+C=1;A+B−C=0
Solving these eqns , we get
A=23,B=−13,C=13
Substituting these values in (2), we get
1+v2(1−v)(1+v2+v)=23(1−v)−13(v−1)(1+v2+v)
So, eqn (1) becomes
∫23(1−v)dv−∫13(v−1)(1+v2+v)dv=∫dxx
⇒23log|1−v|−16∫(2v+1−3)(1+v2+v)dv=logx+logC
⇒23log|1−v|−16∫2v+1(1+v2+v)dv+12∫1(v+12)2+(√32)2dv=logx+logC
⇒23log|1−yx|−16log|v2+v+1|+1√3tan−1(2v+1√3)=logx+logC
⇒23log|x−y|−16log|y2+xy+x2|+23logx+1√3tan−1(2y+xx√3)=53logx+logC
⇒logc(x−y)2/3x(y2+xy+x2)1/6=−1√3tan−1(2y+xx√3)
⇒c(x−y)2/3x(y2+xy+x2)1/6=exp[−1√3tan−1(2y+xx√3)]