The correct option is
A x+y−2=k(x−y)3Substitute x→X+h and y=Y+k
∴h+2k=3,2h+k=3
⇒h=1,k=1
Now dydx=X+2Y2X+Y
Substitute Y=vx
Now xdvdx=1+2v2+v−v
⇒2+v(1+v)(1−v)dv=dxx
=∫(11−v+11−v2)dv=ln|X|+c
=−ln|1−v|+12ln∣∣∣v+11−v∣∣∣=ln|X|+c⇒ln|X−Y|+ln∣∣∣Y+XX−Y∣∣∣12=c
⇒ln∣∣
∣
∣∣√X+YX−YX−Y∣∣
∣
∣∣⇒X+Y(X−Y)3=k=(x+y−2)=k(x−y)3