The correct option is D x+y+43=ce3(x−2y)
dydx=x+y+12x+2y+3
which is not a homogeneous differential eqn.
Here, a1a2=12;b1b2=12⇒a1a2=b1b2
dydx=x+y+12(x+y)+3 .....(1)
Put x+y=v
1+dydx=dvdx⇒dydx=dvdx−1
So, eqn (1) becomes,
dvdx−1=v+12v+3⇒dvdx=3v+42v+3
⇒2v+33v+4dv=dx
Integrating both sides, we get
⇒13∫2(3v+4)+13v+4dv=∫dx
2v+log|3v+4|=3x+logc
⇒log|3x+3y+4c|=x−2y