Here,
(3x+2y)dy=(2x+3y)dx⇒2xdx−2ydy=3(xdy−ydx)⇒d(x2−y2)x2=3xdy−ydxx2 (Divided by x2)
⇒d(x2(1−y2x2))x2=3d(yx)
Let yx=z and v=x2.
ie, (1−z2)dv+vd(1−z2)v=3dz (Product Rule)
Let 1−z2=u.
On dividing throughout with (1−z2),
⇒dvv+duu=z1−z2
On integrating,
∫dvv+∫duu=∫dz1−z2+lnC
⇒lnv+lnu=ln√1+z1−z+lnC
⇒lnvu√1−z√1+z=lnC
On taking antilog,
vu√1−z√1+z=C
⇒x2(1−y2x2)√1−yx√1+yx=(x2−y2)√x−y√x+y=C
⇒(x2−y2)√x2−y2x+y=(x−y)√x2−y2=C