The correct option is A x+2y+log|2x−y|+c=0
dydx=2x−y+22y−4x+1
Substituting v=2y−4x⇒dvdx=2dydx−4
12(dvdx+4)=2x+12(−4x−v)+2v+1=−v−42(v+1)⇒dvdx=−5vv+1⇒dvdx(v+1)v=−5
Integrating both sides w.r.t x, we get
∫dvdx(v+1)v=∫−5dx⇒logv+v=−5x+c⇒log|2y−4x|+2y−4x=−5x+c⇒log|y−2x|+2y+x+log2=cx+2y+log|2x−y|=c