dydx=x2+y2x2+xy→(1)Then dydx is a homogenous function
Putting y=vx in equation
dydx=V+xdvdx
Put in equation (1)
v+xdvdx=x2+y2x2+y2
On solving we get
1+v1−vdv=1xdx
INtegrating both sides
∫1+v1−vdv=∫1xdx−2y|v−1|−v=log|x|+C
Put y=vx
−2y(y/x)−1−y/x=log|x|+C