The correct option is A 1yx=1(2x)2+c
dydx+yx=y2x2
⇒dydx=y2−xyx2 ....(1)
which is a homogeneous differential eqn
Put y=vx
dydx=v+xdvdx
So, eqn (1) becomes
v+xdvdx=v2−v
⇒xdvdx=v2−2v
⇒(1v2−2v)dv=1xdx
Integrating both sides,
∫(1(v−1)2−1)dv=logx+logC
⇒12log(v−2v)=logCx
⇒v−2v=C2x2
⇒1−2xy=cx2
⇒1yx=1(2x)2+c