The correct option is
C y−4x+2y−4x−2=ce−4xGiven,
dydx=(y−4x)2
Substituting v=y−4x⇒dvdx=dydx−4
dvdx+4=v2⇒dvdx=v2−4⇒dvdxv2−4=1
Integrating both sides w.r.t x, we get
∫dvdxv2−4dx=∫dx∫1v2−4dv=∫dx
We have,
∫1x2−a2dx=12alog∣∣∣x−ax+a∣∣∣+c
⇒14log∣∣∣v−2v+2∣∣∣+c=x+c⇒y−4x+2y−4x−2=ce−4x