The correct option is C y=13−e(2ex−e+1)
dydx=y+∫10ydx
Clearly ∫10ydx= constant =k (say)
So differential equation becomes, dydx=y+k⇒dyy+k=dx
⇒log(y+k)=x+c, c is integration constant.
Give at x=0,y=1⇒c=log(1+k)∴y=exec−k=ex(1+k)−k
Now k=∫10[(1+k)ex−k]dx=(e−1)(1+k)−k⇒k=e−13−e
substituting in above equation we get,
y=13−e(2ex−e+1)