wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: sin3x2cos3x22+sinx=cosx3

A
x=(2n+1)π2,nϵz
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x=(4n+1)π2,nϵz
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x=(4n+1)π4,nϵz
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x=(2n+1)π4,nϵz
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B x=(4n+1)π2,nϵz
Given, sin3x2cos3x22+sinx=cosx3
(sinx2cosx2)(sin2x2+cos2x2+sinx2cosx2)2+sinx=cosx3
(sinx2cosx2)(1+sinx2)2+sinx=cosx3
3(sinx2cosx2)=2(sin2x2cos2x2)=2(sinx2cosx2)(sinx2+cosx2)
(sinx2cosx2)(sinx2+cosx232)=0
(sinx2cosx2)=0 as (sinx2+cosx232)0
tanx2=1x2=nπ+π4,nϵz
x=(4n+1)π2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon