The correct option is
C √x2−y2+√1+x2−y2=c(x+y√x2−y2)xdx−ydyxdy−ydx=√1+x2−y2x2−y2
Substitute x=rsecθ, y=rtanθ
∴x2−y2=r2 ..... (1)
and sinθ=yx ..... (2)
On differentiating (1), xdx−ydy=rdr... (3)
On differentiating (2),
xdy−ydx=x2cosθdθ=r2secθdθ ..... (4)
Now rdrr2secθdθ=√1+r2r
⇒∫dr√1+r2=∫secθdθ
⇒ln(r+√1+r2)=ln(secθ+tanθ)+inc
⇒r+√1+r2=c(secθ+tanθ)
√x2−y2+√1+x2−y2=c(x+y√x2−y2)