ydx−xdy(x−y)2=dx2√1−x2=y−xdydx(x−y)2=12√1−x2
Divide the numerator and denominator of L. H. S by x2
⇒yx.1x−1x.dydx(1−yx)2=12√1−x2
⇒dydx−yx(1−yx)2=−x2√1−x2
y=vx⇒dydx=v+xdvdx
⇒v+xdvdx−v(1−v)2=−x2√1−x2
⇒∫dv(1−v)2=∫dc2√1−x2
⇒11−v=sin−1(x)2+c
⇒11−yx=sin−1(x)2+c
At x=1→y=2
⇒11−2=sin−1(1)2+c
⇒−1=π/22+c
⇒c=−(π4+1)
⇒xx−y=sin−1(x)2−(π4+1)