wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve ydxxdy(xy)2=dx21x2, given that y=2, when x=1.

Open in App
Solution

ydxxdy(xy)2=dx21x2=yxdydx(xy)2=121x2


Divide the numerator and denominator of L. H. S by x2


yx.1x1x.dydx(1yx)2=121x2


dydxyx(1yx)2=x21x2


y=vxdydx=v+xdvdx


v+xdvdxv(1v)2=x21x2


dv(1v)2=dc21x2


11v=sin1(x)2+c


11yx=sin1(x)2+c


At x=1y=2


112=sin1(1)2+c


1=π/22+c


c=(π4+1)


xxy=sin1(x)2(π4+1)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Irrational Algebraic Fractions - 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon