1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration of Trigonometric Functions
Solve ∫01xs...
Question
Solve
∫
1
0
x
sin
−
1
x
√
1
−
x
2
d
x
is equal to
A
π
/
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π
/
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is
A
1
I
=
∫
1
0
x
sin
−
1
x
√
1
−
x
2
d
x
Putting
sin
−
1
x
=
t
1
√
1
−
x
2
d
x
=
d
t
Changing limts
x
:
0
→
1
:
:
t
;
0
→
π
2
Thus
I
=
∫
1
0
sin
t
×
t
×
d
x
√
1
−
x
2
=
∫
π
2
0
sin
t
×
t
d
t
∫
π
2
0
sin
t
×
t
d
t
=
t
∫
π
2
0
sin
t
d
t
−
∫
π
2
0
(
d
(
t
)
d
t
∫
sin
t
d
t
)
d
t
=
[
t
(
−
cos
t
)
]
π
2
0
−
∫
π
2
0
(
−
cos
t
)
=
[
−
t
(
cos
t
)
]
π
2
0
+
∫
π
2
0
(
cos
t
)
=
[
−
t
(
cos
t
)
]
π
2
0
+
[
sin
t
]
π
2
0
=
−
π
2
cos
π
2
+
sin
π
2
−
[
−
0
×
cos
0
+
sin
0
]
=
−
π
2
×
0
+
1
+
0
×
1
=
0
=
1
Suggest Corrections
0
Similar questions
Q.
∫
1
0
x
S
i
n
−
1
x
√
1
−
x
2
d
x
=
Q.
Solve:
1
∫
0
(
tan
−
1
x
)
1
+
x
2
d
x
Q.
Solve :
tan
−
1
(
x
−
1
x
−
2
)
+
tan
−
1
(
x
+
1
x
+
2
)
=
π
4
Q.
Solve
is equal to
(A)
(B).
(C)
(D)