Let A=∫10elntan−1x⋅sin−1(cosx)dx.
We know that elnx=x
Thus, eln(tan−1x)=tan−1x
Using this in the above integration, we get :
A=∫10tan−1x⋅sin−1(cosx)dx
We know that sin−1x+cos−1x=π2
A=∫10tan−1x⋅(π2−cos−1(cosx))dx
Since, we are integrating from 0 to 1, cos−1(cosx)=x
Thus, A=∫10tan−1x⋅(π2−x)dx
=π2∫10tan−1xdx−∫10xtan−1xdx
Integrating by parts,
A=π2([xtan−1xdx]10−∫10x1+x2dx)−([x22tan−1x]10−∫10x22(1+x2)dx)
=π2((π4−0)−[12ln(1+x2)]10)−((12×π4−0)−[12−12tan−1x]10)
=π28−π4ln(2)+12