wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve 10elntan1xsin1(cosx)dx

Open in App
Solution

Let A=10elntan1xsin1(cosx)dx.
We know that elnx=x
Thus, eln(tan1x)=tan1x
Using this in the above integration, we get :

A=10tan1xsin1(cosx)dx
We know that sin1x+cos1x=π2
A=10tan1x(π2cos1(cosx))dx

Since, we are integrating from 0 to 1, cos1(cosx)=x
Thus, A=10tan1x(π2x)dx
=π210tan1xdx10xtan1xdx
Integrating by parts,
A=π2([xtan1xdx]1010x1+x2dx)([x22tan1x]1010x22(1+x2)dx)
=π2((π40)[12ln(1+x2)]10)((12×π40)[1212tan1x]10)
=π28π4ln(2)+12


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon