Consider the given integral.
I=2π∫0xsin2nxsin2nx+cos2nxdx …… (1)
Use the property,
a∫0f(t)dt=a∫0f(a−t)dt
Therefore,
I=2π∫0(2π−x)sin2n(2π−x)sin2n(2π−x)+cos2n(2π−x)dx
I=2π∫0(2π−x)sin2n(x)sin2n(x)+cos2n(x)dx …… (2)
Add equations (1) and (2).
2I=2π∫0(2π−x+x)sin2n(x)sin2n(x)+cos2n(x)dx
2I=2π2π∫0sin2n(x)sin2n(x)+cos2n(x)dx
I=π2π∫0sin2n(x)sin2n(x)+cos2n(x)dx
Again, using property 2a∫0f(t)dt=2a∫0f(t)dt, if f(2a−t)=f(t), we have
I=2ππ∫0sin2n(x)sin2n(x)+cos2n(x)dx
Again, use same property.
I=4ππ/2∫0sin2n(x)sin2n(x)+cos2n(x)dx …… (3)
I=4ππ/2∫0sin2n(π2−x)sin2n(π2−x)+cos2n(π2−x)dx
I=4ππ/2∫0cos2n(x)sin2n(x)+cos2n(x)dx …… (4)
Add equations (3) and (4).
2I=4ππ/2∫0sin2n(x)+cos2n(x)sin2n(x)+cos2n(x)dx
2I=4ππ/2∫01dx
I=2π[π2−0]
I=π2
Hence, the value of the integral is π2.