wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:2π0xsin2nxsin2nx+cos2nxdx

A
3π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
5π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A π2

Consider the given integral.

I=2π0xsin2nxsin2nx+cos2nxdx …… (1)

Use the property,

a0f(t)dt=a0f(at)dt

Therefore,

I=2π0(2πx)sin2n(2πx)sin2n(2πx)+cos2n(2πx)dx

I=2π0(2πx)sin2n(x)sin2n(x)+cos2n(x)dx …… (2)

Add equations (1) and (2).

2I=2π0(2πx+x)sin2n(x)sin2n(x)+cos2n(x)dx

2I=2π2π0sin2n(x)sin2n(x)+cos2n(x)dx

I=π2π0sin2n(x)sin2n(x)+cos2n(x)dx


Again, using property 2a0f(t)dt=2a0f(t)dt, if f(2at)=f(t), we have

I=2ππ0sin2n(x)sin2n(x)+cos2n(x)dx

Again, use same property.

I=4ππ/20sin2n(x)sin2n(x)+cos2n(x)dx …… (3)

I=4ππ/20sin2n(π2x)sin2n(π2x)+cos2n(π2x)dx

I=4ππ/20cos2n(x)sin2n(x)+cos2n(x)dx …… (4)

Add equations (3) and (4).

2I=4ππ/20sin2n(x)+cos2n(x)sin2n(x)+cos2n(x)dx

2I=4ππ/201dx

I=2π[π20]

I=π2

Hence, the value of the integral is π2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Types of Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon