wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
2π0ex.sin(π4+x2)dx

Open in App
Solution

2π0exsin(π4+x2)dx
I=2π0exsin(π4+x2)dx
I=sin(π4+x2)ex12cos(π4+x2)exdx
I=sin(π4+x2)ex12[cos(π4+x2)ex+12sin(π4+x2)exdx]
I=sin(π4+x2)ex12cos(π4+x2)ex14sin(π4+x2)exdx
I=sin(π4+x2)ex12cos(π4+x2)exI4
I+I4=sin(π4+x2)ex|2π012cos(π4+x2)ex|2π0
5I4=sin(π4+π).e2πsin(π4).e012[cos(π4+π)e2πcos(π4).e0]
5I4=12e2π12.1+12.12e2π+12.12
5I4=e2π(122+122)122
5I4=122e2π122=122(e2π+1)
I=45×122(e2π+1)
I=25(e2π+1)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon