∫π20dx1+cos2x=∫π20dxcosec2x=∫π20sin2xdx=∫π201−cos2x2dx=12∫π20(1−cos2x)dx=12[x−sinx2]π2=12⎡⎢ ⎢ ⎢⎣π2−sin2×π22⎤⎥ ⎥ ⎥⎦=12[π2−0]=π4