Solve ∫π/20cos2xsin2x+cos2xdx
Consider the given integral.
I=∫π20(cos2xsin2x+cos2x)dx …….. (1)
We know that
∫abf(x)dx=∫abf(a+b−x)dx
Therefore,
I=∫π20(sin2xcos2x+sin2x)dx …… (2)
On adding equation (1) and (2), we get
2I=∫π20(sin2x+cos2xcos2x+sin2x)dx
2I=∫π201dx
2I=[x]π20
2I=π2−0
I=π4
Hence, this is the answer.