letcosx=t⇒−sinxdx=dt⟶(1)alsoforx=0,t=1andforx=π2,t=0hence,∫sinxcosxcos2x+3cosx+2dx=−∫tt2+3t+2dt=−∫t(t+1)(t+2)dtintegratingbypartialfractions∵t(t+1)(t+2)=At+1+Bt+2⇒t=A(t+2)+B(t+1)⇒t=(A+B)t+(2A+B)comparingbothsidewegetA+B=1and2A+B=0solvingboththeequationwebgetA=−1andB=2∴−∫01t(t+1)(t+2)dt=−∫01[−1t+1+2t+2]dt=∫01[1t+1−2t+2]dt=[log(t+1)]01−[log(t+2)]01=log98