wiz-icon
MyQuestionIcon
MyQuestionIcon
7
You visited us 7 times! Enjoying our articles? Unlock Full Access!
Question

Solve π/20xsinxcosxcos4x+sin4xdx

Open in App
Solution

I=π20xsinxcosxsin4x+cos4xdx

Using , a0f(x)dx=a0f(ax)dx

I=π20(π2x)sin(π2x)cos(π2x)sin4(π2x)+cos4(π2x)dx
We know, cos(π2x)=sinx and sin(π2x)=cosx
Putting in I
π20(π2x)cosxsinxcos4x+sin4xdx

I=π20π2sinxcosxsin4x+cos4xdxπ20xsinxcosxsin4x+cos4xdx

I=π20π2sinxcosxsin4x+cos4xdxI

2I=π20π2sinxcosxsin4x+cos4xdx

I=π4π20sinxcosxsin4x+cos4xdx

Dividing Numerator and Denominator with cos4x
I=π4π20sinxcos3xsin4xcos4x+1dx

I=π4π20tanxsec2xtan4x+1dx

Substitue tan2x=t
Then 2tanxsec2xdx=dt
When x=0,t=0 and x=π2,t=
I=π40dt2t2+1

I=π80dtt2+1

I=π8[tan1t]0

I=π8[tan1tan10]

I=π8[π20]

I=π216

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon