I=∫π20xsinxcosxsin4x+cos4xdx
Using , ∫a0f(x)dx=∫a0f(a−x)dx
I=∫π20(π2−x)sin(π2−x)cos(π2−x)sin4(π2−x)+cos4(π2−x)dx
We know, cos(π2−x)=sinx and sin(π2−x)=cosx
Putting in I
⇒∫π20(π2−x)cosxsinxcos4x+sin4xdx
I=∫π20π2sinxcosxsin4x+cos4xdx−∫π20xsinxcosxsin4x+cos4xdx
I=∫π20π2sinxcosxsin4x+cos4xdx−I
2I=∫π20π2sinxcosxsin4x+cos4xdx
I=π4∫π20sinxcosxsin4x+cos4xdx
Dividing Numerator and Denominator with cos4x
I=π4∫π20sinxcos3xsin4xcos4x+1dx
I=π4∫π20tanxsec2xtan4x+1dx
Substitue tan2x=t
Then 2tanxsec2xdx=dt
When x=0,t=0 and x=π2,t=∞
I=π4∫∞0dt2t2+1
I=π8∫∞0dtt2+1
I=π8[tan−1t]∞0
I=π8[tan−1∞−tan−10]
I=π8[π2−0]
I=π216