wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve : π/40ln(1+tanx)dx

Open in App
Solution

Let I=π/40ln(1+tanx)dx ....(1)
Replace xπ4x
I=π/40ln(1+tan(π4x))dx
I=π/40ln(1+1+tanx1tanx)dx
I=π/40ln(1tanx+1+tanx1tanx)dx
I=π/40ln(21tanx)dx
I=π/40ln(2dx1tanx) .......(2)
Adding (1) and (2) we get
2I=π/40ln[(1+tanx)×(21+tanx)]dx using the properties of logarithm
2I=π/40ln2dx
2I=ln2π/40dx
2I=ln2[x]π/40
2I=ln2[π40]


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon