(1+sin2x)=sin2x+cos2x+2sinxcosx=(sinx+cosx)2
So, √(1+sin2x)=sinx+cosx
Therefore,
Integral of (sinx+cosx)= Integration of sinx+ integration of cosx=−cosx+sinx
Putting the limits from 0 to π4, we get,
−[cosπ4−cos0]+[sinπ4−sin0]
=−1√2+1+1√2−0
=1
Hence, this is the answer.