The correct option is
C π4Let I1=∫π013+2sinx+cosx
Let t=tanx2
at=12sec2(x2)dx
⇒sec2(x2)dx=2dt
=∫12.2tanx21+tan2x2+1+tan2(x2)1−tan2(x2)+3dx
=∫1+tan2(x2)4tan(x2)+1−tan2(x2)+3+3tan2(x2)dx
=∫sec2(x2)2tan2(x2)+4tan(x2)+4dx
=∫2dt2(t2+2t+2)
=∫dt(1+1)2+1
=11tan−1(t+11)
=[(tan−1(tanx2+1))]π0
=tan−1(∞)−tan−1(1)
=π2−π4
=π4