wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve :
π01a22acosx+1dx

Open in App
Solution

I=π01a22acosx+1dxputtingthevalueofcosxascosx=1tan2x21+tan2x2I=π01a22a.1tan2x21+tan2x2+1dx=π01+tan2x2(a2+1)(1+tan2x2)2a(1tan2x2)dx=π0sec2x2(a2+1)(1+tan2x2)2a(1tan2x2)dx
Lettanx2=tsec2x2dx=2dtalso,x=0t=tan0=0and,x=πt=tanπ2=I=02dt(a2+1)(1+t2)2a(1t2)=20dt(1a)2+((1+a)t)2=2(1a)20dt1+[1+a1at]2againLet1+a1at=udt=du(1a1+a)I=2(1a)(1+a)0du1+u2=2(1a)(1+a)[tan1u]0=21a2(π20)=π1a2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon