I=∫π01a2−2acosx+1dxputtingthevalueofcosxascosx=1−tan2x21+tan2x2∴I=∫π01a2−2a.1−tan2x21+tan2x2+1dx=∫π01+tan2x2(a2+1)(1+tan2x2)−2a(1−tan2x2)dx=∫π0sec2x2(a2+1)(1+tan2x2)−2a(1−tan2x2)dxLettanx2=t⇒sec2x2dx=2dtalso,x=0⇒t=tan0=0and,x=π⇒t=tanπ2=∞∴I=∫∞02dt(a2+1)(1+t2)−2a(1−t2)=2∫∞0dt(1−a)2+((1+a)t)2=2(1−a)2∫∞0dt1+[1+a1−at]2againLet1+a1−at=u⇒dt=du(1−a1+a)∴I=2(1−a)(1+a)∫∞0du1+u2=2(1−a)(1+a)[tan−1u]∞0=21−a2(π2−0)=π1−a2