wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve π0xdxa2cos2x+b2sin2x

A
I=π24ab
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
I=π22ab
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
I=π2ab
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B I=π22ab
I=π0xdxa2cos2x+b2sin2x

I=π0(πx)dxa2cos2(πx)+b2sin2(πx)

I=ππ0dxa2cos2x+b2sin2xπ0xdxa2cos2x+b2sin2x

I=ππ0dxa2cos2x+b2sin2xI

2I=ππ/20dxa2cos2x+b2sin2x (2a0f(x)dx=2a0f(x)dx, if f(2ax)=f(x))

2I=2ππ/20dxa2cos2x+b2sin2x

I=ππ/20sec2xdxa2+b2tan2x (dividing numerator and denominator by cos2x)

putting tanx=t sec2xdx=dt

I=π0dta2+(bt)2

I=π×1ab[tan1bta]0

I=πab[π20]

I=π22ab

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon