∫π0sinxsinx+cosxdx
The solution to integration of the given type is given by substituting the numerator as
sinx=A(sinx+cosx)+B[ddx(sinx+cosx)]............(A)
{Numerator=A(Denominator)+B[ddx(denominator)] (a,b are constants ) }
⇒sinx=A(sinx+cosx)+B[cosx−sinx]
⇒sinx=A(sinx+cosx)+B(cosx−sinx)
⇒sinx=Asinx+Acosx+Bcosx−Bsinx
⇒sinx=(A−B)sinx+(A+B)cosx
[ taking common terms]
Now comparing both the sides of the equation for sine & cosine values
Therefore A−B=1......(1) (since the coefficient of sinx is 1 on LHS )
A+B=0.......(2) ( No cosx terms on LHS)
solving (1) & (2) we have
A−B=1
A+B=0
Add (1) & (2)
2A=1
A=1/2,B=−1/2
Now substituting sinx according to equation (A)
∫π01/2(sinx+cosx)−1/2(cosx−sinx)dxsinx+cosx
squaring terms
∫π01/2(sinx+cosx)dxsinx+cosx−∫π01/2(cosx−sinx)dxsinx+cosx
1/2∫π0dx−1/2∫π0cosx−sinxdxsinx+cosx
1/2[x]π0−1/2[log|sinx+cosx|]π0{∫dx=x∫f′(x)fx=log(fx)}
ddx(sinx+cosx)=cosx−sinx
1/2[π−0]−1/2[log(sinπ+cosπ)−log(sin0+cos0)
1/2π−1/2log(sinπ+cosπ)sin0+cos0 [logx−logy=logx/y]
π2−1/2log(0−10+1)
π/2−1/2(−log1) [log1=0]
π/2−1/2(0)
=π/2