CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve π0sinxsinx+cosxdx

Open in App
Solution

π0sinxsinx+cosxdx
The solution to integration of the given type is given by substituting the numerator as
sinx=A(sinx+cosx)+B[ddx(sinx+cosx)]............(A)
{Numerator=A(Denominator)+B[ddx(denominator)] (a,b are constants ) }
sinx=A(sinx+cosx)+B[cosxsinx]
sinx=A(sinx+cosx)+B(cosxsinx)
sinx=Asinx+Acosx+BcosxBsinx
sinx=(AB)sinx+(A+B)cosx
[ taking common terms]
Now comparing both the sides of the equation for sine & cosine values
Therefore AB=1......(1) (since the coefficient of sinx is 1 on LHS )
A+B=0.......(2) ( No cosx terms on LHS)
solving (1) & (2) we have
AB=1
A+B=0
Add (1) & (2)
2A=1
A=1/2,B=1/2
Now substituting sinx according to equation (A)
π01/2(sinx+cosx)1/2(cosxsinx)dxsinx+cosx
squaring terms
π01/2(sinx+cosx)dxsinx+cosxπ01/2(cosxsinx)dxsinx+cosx
1/2π0dx1/2π0cosxsinxdxsinx+cosx
1/2[x]π01/2[log|sinx+cosx|]π0{dx=xf(x)fx=log(fx)}
ddx(sinx+cosx)=cosxsinx
1/2[π0]1/2[log(sinπ+cosπ)log(sin0+cos0)
1/2π1/2log(sinπ+cosπ)sin0+cos0 [logxlogy=logx/y]
π21/2log(010+1)
π/21/2(log1) [log1=0]
π/21/2(0)
=π/2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon