The correct option is
C 12√2tan1x2−1√2x+14√2log∣∣∣x2+1+√2xx2+1−√2x∣∣∣+cNow,
∫11+x4dx
=12∫(x2+1)−(x2−1)1+x4dx
=12∫x2+11+x4dx−12∫x2−11+x4dx
=12∫x2+1(x2−1)2+2x2dx−12∫x2−1(x2+1)2−2x2dx
=12∫1+1x2(x−1x)2+2dx−12∫1−1x2(x+1x)2−2dx
=12∫d(x−1x)(x−1x)2+2−12∫d(x+1x)(x+1x)2−2
=12∫d(x−1x)(x−1x)2+(√2)2−12∫d(x+1x)(x+1x)2−(√2)2
=12√2tan1x−1x√2−14√2log∣∣
∣
∣∣x+1x−√2x+1x+√2∣∣
∣
∣∣+c
=12√2tan1x2−1√2x+14√2log∣∣∣x2+1+√2xx2+1−√2x∣∣∣+c