Now,
∫12−3cos2xdx
=∫(1+tan2x)2(1+tan2x)−3(1−tan2x)dx [ Since cos2x=1−tan2x1+tan2x]
=∫(sec2x)−1+5tan2xdx
=15∫(sec2x)−15+tan2xdx
=15∫d(tanx)(tanx)2−(1√5)2
=15.√52log∣∣
∣
∣
∣∣tanx−1√5tanx+1√5∣∣
∣
∣
∣∣+c [ Where c being integrating constant]
=12√5log∣∣
∣
∣
∣∣tanx−1√5tanx+1√5∣∣
∣
∣
∣∣+c