wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve 1sinxcos3xdx

Open in App
Solution

Consider the given integral.

I=dxsinxcos3x

I=sinxdxsin2xcos3x

I=sinxdx(1cos2x)cos3x

Let t=cosx

dtdx=sinx

dt=sinxdx

Therefore,

I=dt(1t2)t3

I=dt(t21)t3

I=dt(t+1)(t1)t3

I=dt2(t+1)+dt2(t1)dttdtt3

I=12ln(t+1)+12ln(t1)ln(t)+12t2+C

On putting the value of t, we get

I=12ln(cosx+1)+12ln(cosx1)ln(cosx)+12(cosx)2+C

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon