Consider the given integral.
I=∫dxsinxcos3x
I=∫sinxdxsin2xcos3x
I=∫sinxdx(1−cos2x)cos3x
Let t=cosx
dtdx=−sinx
−dt=sinxdx
Therefore,
I=−∫dt(1−t2)t3
I=∫dt(t2−1)t3
I=∫dt(t+1)(t−1)t3
I=∫dt2(t+1)+∫dt2(t−1)−∫dtt−∫dtt3
I=12ln(t+1)+12ln(t−1)−ln(t)+12t2+C
On putting the value of t, we get
I=12ln(cosx+1)+12ln(cosx−1)−ln(cosx)+12(cosx)2+C
Hence, this is the answer.