I=∫1x√x−1x+1dxI=∫1x√x−1x+1×x+1x+1dx∫1x√x2−1x+1dx(x=secθdx=secθ.tanθ)∫1secθ.√sec2θ−1secθ+1.secθ.tanθ(sec2θ−tan2θ=1sec2θ−1=tan2θ)∫√tan2θsecθ+1.tanθ∫tan2θsecθ+1dθ=∫sec2θ−1secθ+1dθI=∫(secθ+1)(secθ−1)(secθ+1)dθ∫secθdθ−∫1dθln(secθ+tanθ)−θ+cI=ln(x+√x2−1)−sec−1x+c.
Hence, this is the answer.