wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
1xx1x+1dx

Open in App
Solution

I=1xx1x+1dxI=1xx1x+1×x+1x+1dx1xx21x+1dx(x=secθdx=secθ.tanθ)1secθ.sec2θ1secθ+1.secθ.tanθ(sec2θtan2θ=1sec2θ1=tan2θ)tan2θsecθ+1.tanθtan2θsecθ+1dθ=sec2θ1secθ+1dθI=(secθ+1)(secθ1)(secθ+1)dθsecθdθ1dθln(secθ+tanθ)θ+cI=ln(x+x21)sec1x+c.

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon