The correct option is
B 14ln∣∣∣x4−1x4∣∣∣+cTake I=∫1x(x4−1)dx
Let 1x(x4−1)=Ax+Bx+1+Cx−1+Dx2+11=A(x+1)(x−1)(x2+1)+Bx(x−1)(x2+1)+Cx(x+1)(x2+1)+Dx(x+1)(x−1)
For x=1,A=−1
For x=1,C=14
For x=−1,B=14
For x=2,D=14
Therefore ∫1x(x4−1)dx=−∫1xdx+14∫dxx+1+14∫dxx−1+14∫dxx2+1
=−ln|x|+14ln|(x+1)|+14ln|(x−1)|+14ln|(x2+1)|+c
=14ln∣∣∣x4−1x4∣∣∣+c