wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
2cosx(1sinx)(1+sin2x)dx

Open in App
Solution

Given 2cosx(1+sin2x)(1sinx)dx
Let as consider the given as I=2cosx(1sinx)(1+sin2x)dx
I=2cosx(sinx1)(sin2x+1)dx
Let sinx=t cosx dx=dt
=2dt(t1)(t2+1)
=2[12(t1)t+12(t2+1)]dt
=2dt2(t1)dt+2t+12(t2+1)dt
=dtt1+t+1t2+1.dt
=log(t1)+tt2+1.dt+1t2+1.dt
Multiply & divide by 2
=log(t1)+122tt2+1.dt+tan1(t)+c.
t2+1=0 2t dt=du
=log(t1)+12duu+tan1(t)+C
=log(sinx1)+12log(u)+tan1(sinx)+C
=log(sinx)+12log(t2+1)+tan1(sinx)+C
=tan1(sinx)+12log(sin2x+1)log(sinx1)+C
2cos0(2+sinx)(1sinx)dx=tan1(sinx)+12log(sin2x+1)log(sinx1)+C

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon