Given ∫2cosx(1+sin2x)(1−sinx)dx
Let as consider the given as I=∫2cosx(1−sinx)(1+sin2x)dx
I=−2∫cosx(sinx−1)(sin2x+1)dx
Let sinx=t⇒ cosx dx=dt
=−2∫dt(t−1)(t2+1)
=−2∫[12(t−1)−t+12(t2+1)]dt
=−2∫dt2(t−1)dt+2∫t+12(t2+1)dt
=−∫dtt−1+∫t+1t2+1.dt
=−log(t−1)+∫tt2+1.dt+∫1t2+1.dt
Multiply & divide by 2
=−log(t−1)+12∫2tt2+1.dt+tan−1(t)+c.
⇓
t2+1=0⇒ 2t dt=du
=−log(t−1)+12∫duu+tan−1(t)+C
=−log(sinx−1)+12log(u)+tan−1(sinx)+C
=−log(sinx)+12log(t2+1)+tan−1(sinx)+C
=tan−1(sinx)+12log(sin2x+1)−log(sinx−1)+C
∴ ∫2cos0(2+sinx)(1−sinx)dx=tan−1(sinx)+12log(sin2x+1)−log(sinx−1)+C