∫2(1−x)(1+x2)= ∫A(1−x)+∫Bx+C(1+x2)
2=A(1+x2)+(Bx+C)(1−x) .........(1)
put x=1 in eq.1
2=A(1+12)+(B(1)+C)(1−1)
2A=2
A=1
and now put x=0andA=1 in eq. (1)
2=1(1+0)+(B(0)+C)(1−0)
C=1
put value of C and A and x=−1 in eq. (1)
2=(1)(1+(−1)2)+(B(−1)+1)(1−(−1))
2=2+2(1−B)
B=1
now,
∫2(1−x)(1+x2)= ∫1(1−x)+∫x+1(1+x2)
= ∫1(1−x) +∫x(1+x2)+∫1(1+x2)
= ∫1(1−x) +12∫2x(1+x2)+∫1(1+x2)
= −log(1−x)+12log(1+x2)+ tan−1x+C