1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration by Substitution
Solve ∫2 + ...
Question
Solve
∫
2
+
x
+
x
2
x
2
(
2
+
x
)
+
2
x
−
1
(
x
+
1
)
2
d
x
A
ln
|
2
−
x
|
+
3
(
x
+
1
)
+
2
ln
(
x
+
1
)
−
1
x
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
ln
|
2
+
x
|
+
3
(
x
+
1
)
+
2
ln
(
x
+
1
)
−
1
x
+
C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
ln
|
2
+
x
|
+
3
(
x
−
1
)
+
2
ln
(
x
+
1
)
−
1
x
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
ln
|
2
+
x
|
+
3
(
x
+
1
)
+
2
ln
(
x
+
1
)
−
1
x
+
C
∫
2
+
x
+
x
2
x
2
(
2
+
x
)
+
2
x
−
1
(
x
+
1
)
2
d
x
=
∫
2
+
x
(
2
+
x
)
x
2
+
x
2
x
2
(
2
+
x
)
+
2
x
+
2
(
x
+
1
)
2
−
3
(
x
+
1
)
2
d
x
=
∫
1
x
2
+
1
2
+
x
+
2
(
x
+
1
)
(
x
+
1
)
2
−
3
(
x
+
1
)
2
d
x
=
−
1
x
+
ln
|
2
+
x
|
+
3
(
x
+
1
)
+
∫
2
(
x
+
1
)
(
x
+
1
)
2
d
x
Let
(
x
+
1
)
2
=
t
2
(
x
+
1
)
d
x
=
d
t
=
−
1
x
+
ln
|
2
+
x
|
+
3
(
x
+
1
)
+
∫
2
t
d
t
=
−
1
x
+
ln
|
2
+
x
|
+
3
(
x
+
1
)
+
ln
(
x
+
1
)
2
+
C
=
ln
|
2
+
x
|
+
3
(
x
+
1
)
+
2
ln
(
x
+
1
)
−
1
x
+
C
Suggest Corrections
0
Similar questions
Q.
∫
sin
(
tan
−
1
√
x
)
d
x
(
x
≥
0
)
is
Q.
∫
√
x
2
+
2
x
+
5
dx
is
equal
to