Consider the given function,
∫cos2x+2sin2xcos2x
Then,
∫cox2x−sin2x+2sin2xcos2xdx
=∫cos2x+sin2xcos2xdx
=∫1cos2xdx
=∫sec2xdx
=tanx+C
Hence this is the answer.
Evaluate ∫cos2x+2sin2xcos2xdx